Introduction to `rsyncrosim`
Source:vignettes/a01_rsyncrosim_vignette_basic.Rmd
a01_rsyncrosim_vignette_basic.Rmd
This vignette will cover the basics of using the
rsyncrosim
package within the
SyncroSim software
framework.
Overview of SyncroSim
SyncroSim is a software platform that helps you turn your data into forecasts. At the core of SyncroSim is an engine that automatically structures your existing data, regardless of its original format. SyncroSim transforms this structured data into forecasts by running it through a pipeline of calculations (i.e. a suite of models). Finally, SyncroSim provides a rich interface to interact with your data and models, allowing you to explore and track the consequences of alternative “what-if” forecasting scenarios. Within this software framework is the ability to use and create SyncroSim packages.
For more details consult the SyncroSim online documentation.
Overview of rsyncrosim
rsyncrosim
is an R package designed to facilitate the
development of modeling workflows for the
SyncroSim software
framework. Using the rsyncrosim
interface, simulation
models can be added and run through SyncroSim to transform
scenario-based datasets into model forecasts. This R package takes
advantage of general features of SyncroSim, such as defining scenarios
with spatial or non-spatial inputs, running Monte Carlo simulations, and
summarizing model outputs. rsyncrosim
requires SyncroSim
2.2.13 or higher.
For more details consult the rsyncrosim
CRAN
documentation.
SyncroSim package: helloworldTime
To demonstrate the utility of the rsyncrosim
interface,
we will be using the
helloworldTime
SyncroSim package. helloworldTime
was designed to be a
simple package to introduce timesteps to SyncroSim modeling
workflows.
The package takes from the user 2 inputs, m and b, representing a slope and an intercept value. It then runs these input values through a linear model, y=mt+b, where t is time, and returns the y value as output.
For more details on the different features of the
helloworldTime
SyncroSim package, consult the SyncroSim
Enhancing
a Package: Adding Timesteps tutorial.
Setup
Install SyncroSim
Before using rsyncrosim
you will first need to
download and
install the SyncroSim software. Versions of SyncroSim exist for both
Windows and Linux.
Note: this tutorial was developed using
rsyncrosim
version 2.0. To use rsyncrosim
version 2.0 or greater, SyncroSim version 3.0 or greater is
required.
Installing and loading R packages
You will need to install the rsyncrosim
R package,
either using
CRAN or from
the rsyncrosim
GitHub
repository. Versions of rsyncrosim
are available for
both Windows and Linux.
In a new R script, load the rsyncrosim
package.
# Load R package for working with SyncroSim
library(rsyncrosim)
Connecting R to SyncroSim using session()
The next step in setting up the R environment for the
rsyncrosim
workflow is to create a SyncroSim session object
in R that provides the connection to your installed copy of the
SyncroSim software. A new session is created using the
session()
function, in which the first argument is a path
to the folder on your computer where SyncroSim has been installed. If
the first argument is left blank, then the default install folder is
used (Windows only).
mySession <- session("path/to/install_folder") # Create a session based on SyncroSim install folder
mySession <- session() # Using default install folder (Windows only)
mySession # Displays the session object
## class : Session
## filepath [character]: C:/Program Files/SyncroSim Studio
## silent [logical] : TRUE
## printCmd [logical] : FALSE
## condaFilepath [NULL]:
You can check to see which version of SyncroSim your R script is
connected to by running the version()
function.
version(mySession)
## [1] "3.0.9"
Installing SyncroSim packages using
installPackage()
Finally, check if the
helloworldTime
package is already installed. Use the packages()
function
from rsyncrosim
to first get a list of all currently
installed packages in SyncroSim.
# Get list of installed packages
packages()
## [1] name version description location status
## <0 rows> (or 0-length row.names)
Currently we do not have any packages installed! To see which
packages are available from the SyncroSim package server, you can use
the installed = FALSE
argument in the
packages()
function.
## name version
## 1 burnP3Plus 2.0.0
## 2 burnP3PlusCell2Fire 2.0.0
## 3 burnP3PlusPrometheus 2.0.0
## 4 demosales 2.0.0
## 5 dgsim 3.0.0
## 6 helloworld 2.0.0
## description
## 1 Burn-P3+ package for burn probability modeling
## 2 Cell2Fire fire growth model package for BurnP3+
## 3 Prometheus fire growth model package for BurnP3+
## 4 Demo Sales SyncroSim Package
## 5 Simulates demographics of wildlife populations
## 6 Example demonstrating how to create a SyncroSim package
## url
## 1 https://burnp3.github.io/BurnP3Plus/
## 2 https://burnp3.github.io/BurnP3Plus/
## 3 https://burnp3.github.io/BurnP3Plus/
## 4 https://apexrms.github.io/demosales/
## 5 https://apexrms.github.io/dgsim/
## 6 https://apexrms.github.io/helloworld/
Install helloworldTime
using the rynscrosim
function installPackage()
. This function takes a package
name as input and then queries the SyncroSim package server for the
specified package.
# Install helloworldTime
installPackage("helloworldTime")
## Package <helloworldTime v2.0.0> installed
To install the package from a .ssimpkg
file on your
local computer rather than installing directly from the server, you can
use the addPackage()
function with the file path to the
.ssimpkg
, rather than using the package name as the
argument.
# Install helloworldTime using file path to ssimpkg file
installPackage("path/to/helloworldTime.ssimpkg")
Now helloworldTime
should be included in the package
list:
# Get list of installed packages
packages()
## name version
## 1 helloworldTime 2.0.0
## description
## 1 Example demonstrating how to use timesteps with an R model
## location
## 1 C:\\Users\\birch\\AppData\\Local\\SyncroSim Studio\\Packages\\helloworldTime\\2.0.0
## status
## 1 OK
Note: you can install multiple versions of the same package
using the installPackage()
function and specifying the
version
argument. You can also uninstall packages using the
uninstallPackage()
function in rsyncrosim
.
Create a modeling workflow
When creating a new modeling workflow from scratch, we need to create objects of the following scopes:
These objects are hierarchical, such that a library can contain many projects, and each project can contain many scenarios. All parameters or configurations set in a library are inherited by all projects within the library, and all parameters or configurations set in a project are inherited by all scenarios within that project. See below for further information on these SyncroSim objects.
Create a new library using ssimLibrary()
A SyncroSim
library
is a file (with .ssim
extension) that stores all of your
model inputs and outputs. The format of each SyncroSim library is unique
to the SyncroSim package with which it is associated. We use the
ssimLibrary()
function to create a new SsimLibrary
object in R that is connected (through your session) to a SyncroSim
library file.
# Create a new library
myLibrary <- ssimLibrary(name = "helloworldLibrary.ssim",
session = mySession,
packages = "helloworldTime")
# Check library information
myLibrary
## Package <helloworldTime v2.0.0> added
## class : SsimLibrary
## session [Session] : C:/Program Files/SyncroSim Studio, printCmd=FALSE
## filepath [character] : path/to/helloworldLibrary.ssim
## datasheetNames [data.frame]: scope,package,name,displayName,isSingle,displayMember
Note: if you have SyncroSim installed in the default
location, you do not need to specify the session
argument
when creating or loading a library. However, if you have SyncroSim
installed in a non-default location, then you must include the
session
argument when creating or loading a library and
making any subsequent calls to your library.
We can also use the ssimLibrary()
function to open an
existing library. For instance, now that we have created a library
called “helloworldLibrary.ssim”, we would simply specify that we want to
open this library using the name
argument. The
name
argument takes the path to the SyncroSim library
.ssim file that you would like to open. Since
“helloworldLibrary” is in our working directory we do not need to
specify the full path to this library.
# Open existing library
myLibrary <- ssimLibrary(name = "helloworldLibrary.ssim")
Note: if you want to create a new library file with an
existing library name rather than opening the existing library, you can
use overwrite=TRUE
in the ssimLibrary()
function.
Open a project using project()
Each SyncroSim library contains one or more SyncroSim
projects,
each represented by a Project object in R. Projects typically
store model inputs that are common to all your scenarios. In most
situations you will need only a single project for your library; by
default each new library starts with a single project named
“Definitions” (with a unique projectId
= 1). The
project()
function is used to both create and retrieve
projects. Note that the ssimObject
here can be the name of
a library or scenario.
# Open existing project
myProject = project(ssimObject = myLibrary, project = "Definitions") # Using name for project
myProject = project(ssimObject = myLibrary, project = 1) # Using projectId for project
# Check project information
myProject
## class : Project
## projectId [numeric] : 1
## session [Session] : C:/Program Files/SyncroSim Studio, printCmd=FALSE
## filepath [character] : path/to/helloworldLibrary.ssim
## datasheetNames [data.frame]: scope,package,name,displayName,isSingle,displayMember
Create a new scenario using scenario()
Finally, each SyncroSim project contains one or more scenarios, each represented by a Scenario object in R.
Scenarios store the specific inputs and outputs associated with each transformer in SyncroSim. SyncroSim models can be broken down into one or more of these transformers. Each transformer essentially runs a series of calculations on the input data to transform it into the output data. Scenarios can contain multiple transformers connected by a series of pipelines, such that the output of one transformer becomes the input of the next.
Each scenario can be identified by its unique
scenarioId
. The scenario()
function is used to
both create and retrieve scenarios. Note that the
ssimObject
here can be the name of a library or a
project.
# Create a new scenario (associated with the default project)
myScenario = scenario(ssimObject = myProject, scenario = "My first scenario")
# Check scenario information
myScenario
## class : Scenario
## projectId [numeric] : 1
## scenarioId [numeric] : 1
## parentId [numeric] : 0
## folderId [numeric] : 0
## breakpoints [list] :
## session [Session] : C:/Program Files/SyncroSim Studio, printCmd=FALSE
## filepath [character] : path/to/helloworldLibrary.ssim
## datasheetNames [data.frame]: scope,package,name,displayName,isSingle,displayMember
View model inputs using datasheet()
Each SyncroSim library contains multiple SyncroSim
datasheets.
A SyncroSim datasheet is simply a table of data stored in the library,
and they represent the input and output data for transformers.
Datasheets each have a scope: either
library,
project,
or
scenario.
Datasheets with a library scope represent data that is specified only
once for the entire library, such as the location of the backup folder.
Datasheets with a project scope represent data that are shared over all
scenarios within a project. Datasheets with a scenario scope represent
data that must be specified for each generated scenario. We can view
datasheets of varying scopes using the datasheet()
function
from rsyncrosim
.
# View all Datasheets associated with a library, project, or scenario
datasheet(myScenario)
## scope name displayName
## 23 scenario core_DistributionValue Distributions
## 24 scenario core_ExternalVariableValue External Variables
## 25 scenario core_Pipeline Pipeline
## 26 scenario core_SpatialMultiprocessing Spatial Multiprocessing
## 27 scenario helloworldTime_InputDatasheet Inputs
## 28 scenario helloworldTime_OutputDatasheet Outputs
## 29 scenario helloworldTime_RunControl Run Control
If we want to see more information about each datasheet, such as the
scope of the datasheet or if it only accepts a single row of data, we
can set the optional
argument to TRUE
.
datasheet(myScenario, optional = TRUE)
## scope package name
## 5 scenario core core_DistributionValue
## 7 scenario core core_ExternalVariableValue
## 15 scenario core core_Pipeline
## 21 scenario core core_SpatialMultiprocessing
## 27 scenario helloworldTime helloworldTime_InputDatasheet
## 28 scenario helloworldTime helloworldTime_OutputDatasheet
## 29 scenario helloworldTime helloworldTime_RunControl
## displayName isSingle displayMember data scenario
## 5 Distributions FALSE N/A FALSE 1
## 7 External Variables FALSE N/A FALSE 1
## 15 Pipeline FALSE N/A FALSE 1
## 21 Spatial Multiprocessing TRUE N/A FALSE 1
## 27 Inputs TRUE N/A FALSE 1
## 28 Outputs FALSE N/A FALSE 1
## 29 Run Control TRUE N/A FALSE 1
From this output we can see the the Run Control
and
Inputs
datasheets only accept a single row of data
(i.e. isSingle = TRUE
). This is something to consider when
we configure our model inputs.
To view a specific datasheet rather than just a data frame of
available datasheets, set the name
parameter in the
datasheet()
function to the name of the datasheet you want
to view. The general syntax of the name is: “<name of
package>_<name of Datasheet>“. From the list of datasheets
above, we can see that there are 3 datasheets specific to the
helloworldTime
package.
# View the Inputs datasheet for the scenario
datasheet(myScenario, name = "helloworldTime_InputDatasheet")
## [1] m b
## <0 rows> (or 0-length row.names)
Here, we are viewing the contents of a SyncroSim datasheet as an R data frame. Although both SyncroSim datasheets and R data frames are both represented as tables of data with predefined columns and an unlimited number of rows, the underlying structure of these tables differ.
Configure model inputs using datasheet()
and
addRow()
Currently our Inputs
scenario datasheet is empty! We
will need to add some values to the Inputs
datasheet
(InputDatasheet
) so we can run our model.
First, assign the Inputs
datasheet to a new data frame
variable.
# Assign contents of the Inputs datasheet to an R data frame
myInputDataframe <- datasheet(myScenario,
name = "helloworldTime_InputDatasheet")
Check the columns that need input values and the type of values these
columns require (e.g. string, numeric, logical) using the
str()
base R function. This function will also let us know
if certain columns are factors with specific acceptable values.
# Check the columns of the input data frame
str(myInputDataframe)
## 'data.frame': 0 obs. of 2 variables:
## $ m: num
## $ b: num
The Inputs
datasheet requires 2 values:
-
m
: the slope of the linear equation. -
b
: the intercept of the linear equation.
Now, we will update the Inputs
data frame. This can be
done in many ways (e.g. using the dplyr
package), but
rsyncrosim
also provides a helper function called
addRow()
for easily adding new rows to R data frames. The
addRow()
function takes the targetDataframe
as
the first value (in this case, our Inputs
data frame that
we want to update), and the data frame of new rows to append to the
input data frame as the second value.
# Create input data and add it to the input data frame
myInputRow <- data.frame(m = 3, b = 10)
myInputDataframe <- addRow(myInputDataframe, myInputRow)
# Check values
myInputDataframe
## m b
## 1 3 10
Saving modifications to datasheets using
saveDatasheet()
Now that we have a complete data frame of the Inputs
, we
will save this data frame to its respective SyncroSim datasheets using
the saveDatasheet()
function. Since this datasheet is
scenario-scoped, we will save it at the scenario level by setting
ssimObject = myScenario
.
# Save Inputs R data frame to a SyncroSim datasheet
saveDatasheet(ssimObject = myScenario, data = myInputDataframe,
name = "helloworldTime_InputDatasheet")
## Datasheet <helloworldTime_InputDatasheet> saved
Configuring the Pipeline
datasheet
Next, we need to add data to the Pipeline
datasheet. The
Pipeline
datasheet is a built-in SyncroSim datasheet,
meaning that it comes with every SyncroSim library regardless of which
packages that library uses.The Pipeline
datasheet
determines which transformer stage the scenarios will run and in which
order. We use the term “transformers” because these constitute scripts
that transform input data into output data. Use the code below
to assign the Pipeline
datasheet to a new data frame
variable and check the values required by the datasheet.
# Assign contents of the Pipeline datasheet to an R data frame
myPipeline <- datasheet(myScenario,
name = "core_Pipeline")
# Check the columns of the Pipeline data frame
str(myPipeline)
## 'data.frame': 0 obs. of 2 variables:
## $ StageNameId: Factor w/ 1 level "Hello World Time (R)":
## $ RunOrder : num
The Pipeline datasheet requires 2 values:
-
StageNameId
: the pipeline transformer stage. This column is a factor that has only a single level: “Hello World Time (R)”. -
RunOrder
: the numerical order in which the stages will be run.
Below, we use the addRow()
and
saveDatasheet()
functions to update the
Pipeline
datasheet with the transformer(s) we want to run
and the order in which we want to run them. In this case, there is only
a single transformer available from the helloworldTime
package, called “Hello World Time (R)”, so we will add this transformer
to the data frame and set the RunOrder
to
1
.
# Create Pipeline data and add it to the Pipeline data frame
myPipelineRow <- data.frame(StageNameId = "Hello World Time (R)", RunOrder = 1)
myPipeline <- addRow(myPipeline, myPipelineRow)
# Check values
myPipeline
## StageNameId RunOrder
## 1 Hello World Time (R) 1
# Save Pipeline R data frame to a SyncroSim Datasheet
saveDatasheet(ssimObject = myScenario,
data = myPipeline,
name = "core_Pipeline")
## Datasheet <core_Pipeline> saved
Configuring the Run Control
datasheet
There is one other datasheet that we need to configure for our
package to run. The Run Control
datasheet provides
information about how many timesteps to use in the model. Here, we set
the minimum and maximum timesteps for our model. We’ll add this
information to an R data frame and then add it to the Run Control
datasheet using addRow()
. We need to specify data for the
following 2 columns:
-
MinimumTimestep
: the starting time point of the simulation. -
MaximumTimestep
: the end time point of the simulation.
# Assign contents of the run control datasheet to an R data frame
runSettings <- datasheet(myScenario, name = "helloworldTime_RunControl")
# Check the columns of the run control data frame
str(runSettings)
## 'data.frame': 0 obs. of 2 variables:
## $ MinimumTimestep: num
## $ MaximumTimestep: num
# Create run control data and add it to the run control data frame
runSettingsRow <- data.frame(MinimumTimestep = 1,
MaximumTimestep = 10)
runSettings <- addRow(runSettings, runSettingsRow)
# Check values
runSettings
## MinimumTimestep MaximumTimestep
## 1 1 10
# Save run control R data frame to a SyncroSim datasheet
saveDatasheet(ssimObject = myScenario, data = runSettings,
name = "helloworldTime_RunControl")
## Datasheet <helloworldTime_RunControl> saved
Run scenarios
Setting run parameters with run()
We will now run our scenarios using the run()
function
in rsyncrosim
, starting with the first scenario we created
(“My first scenario”).
# Run the first scenario we created
myResultScenario <- run(myScenario)
## [1] "Running scenario [1] My first scenario"
Checking the run log with runLog()
For more information use the runLog()
function, in which
the only argument is the result scenario variable.
# Get run details for the first result scenario
runLog(myResultScenario)
## RunLog
## SyncroSim Version: 3.0.9.0
## Operating System: Microsoft Windows NT 6.2.9200.0
##
## Packages:
## core -> 3.0.9
## helloworldTime -> 2.0.0
##
## Parent Scenario is: [1] My first scenario
## Result scenario is: [2] My first scenario ([1] @ 13-Oct-2024 10:00 AM)
##
## --------------------------------------------
## STARTING SIMULATION: 2024-10-13 : 10:00:59 AM
## --------------------------------------------
##
## Hello World Time (R) => Total time: 00:00:09
##
## --------------------------------------------
## SIMULATION COMPLETE: 2024-10-13 : 10:01:08 AM
## --------------------------------------------
## Total simulation time: 00:00:09
## [1] "RunLog \nSyncroSim Version: 3.0.9.0\nOperating System: Microsoft Windows NT 6.2.9200.0\n\nPackages:\ncore -> 3.0.9\nhelloworldTime -> 2.0.0\n\nParent Scenario is: [1] My first scenario\nResult scenario is: [2] My first scenario ([1] @ 13-Oct-2024 10:00 AM)\n\n--------------------------------------------\nSTARTING SIMULATION: 2024-10-13 : 10:00:59 AM\n--------------------------------------------\n\nHello World Time (R) => Total time: 00:00:09\n\n--------------------------------------------\nSIMULATION COMPLETE: 2024-10-13 : 10:01:08 AM\n--------------------------------------------\nTotal simulation time: 00:00:09 "
Note: if your scenario fails to run, it will still produce a
result scenario that you can use the runLog()
function on to see more information about why the run failed.
View results
Result scenarios
A result scenario is generated when a scenario is run, and
is an exact copy of the original scenario (i.e. it contains the original
scenario’s values for all Inputs
datasheets). The result
scenario is passed to the transformer in order to generate model output,
with the results of the transformer’s calculations then being added to
the result scenario as output datasheets. In this way the result
scenario contains both the output of the run and a snapshot record of
all the model inputs.
Check out the current scenarios in your library using the
scenario()
function.
# Check scenarios that currently exist in your library
scenario(myLibrary)
## ScenarioId ProjectId ParentId Name
## 1 1 1 NA My first scenario
## 2 2 1 1 My first scenario ([1] @ 13-Oct-2024 10:00 AM)
## Owner MergeDependencies IgnoreDependencies IsResult IsReadOnly
## 1 N/A No NA No No
## 2 N/A No NA Yes No
## DateLastModified
## 1 2024-10-13 at 10:00 AM
## 2 2024-10-13 at 10:01 AM
The first scenario is our original scenario, and the second is the
result scenario with a time and date stamp of when it was run. We can
also see some other information about these scenarios, such as whether
or not the scenario is a result or not (i.e. isResult
column).
We can also look at how the datasheets differ between the result
scenario and the original scenario using the datasheet()
function.
# Take a look at original scenario datasheets
datasheet(myScenario, optional = TRUE)
## scope package name
## 5 scenario core core_DistributionValue
## 7 scenario core core_ExternalVariableValue
## 15 scenario core core_Pipeline
## 21 scenario core core_SpatialMultiprocessing
## 27 scenario helloworldTime helloworldTime_InputDatasheet
## 28 scenario helloworldTime helloworldTime_OutputDatasheet
## 29 scenario helloworldTime helloworldTime_RunControl
## displayName isSingle displayMember data scenario
## 5 Distributions FALSE N/A FALSE 1
## 7 External Variables FALSE N/A FALSE 1
## 15 Pipeline FALSE N/A TRUE 1
## 21 Spatial Multiprocessing TRUE N/A FALSE 1
## 27 Inputs TRUE N/A TRUE 1
## 28 Outputs FALSE N/A FALSE 1
## 29 Run Control TRUE N/A TRUE 1
# Take a look at result scenario datasheets
datasheet(myResultScenario, optional = TRUE)
## scope package name
## 5 scenario core core_DistributionValue
## 7 scenario core core_ExternalVariableValue
## 15 scenario core core_Pipeline
## 21 scenario core core_SpatialMultiprocessing
## 27 scenario helloworldTime helloworldTime_InputDatasheet
## 28 scenario helloworldTime helloworldTime_OutputDatasheet
## 29 scenario helloworldTime helloworldTime_RunControl
## displayName isSingle displayMember data scenario
## 5 Distributions FALSE N/A FALSE 1
## 7 External Variables FALSE N/A FALSE 1
## 15 Pipeline FALSE N/A TRUE 1
## 21 Spatial Multiprocessing TRUE N/A FALSE 1
## 27 Inputs TRUE N/A TRUE 1
## 28 Outputs FALSE N/A TRUE 1
## 29 Run Control TRUE N/A TRUE 1
Looking at the data
column, the Outputs
does not contain any data in the original scenario, but does in the
result scenario.
Viewing results with datasheet()
The next step is to view the Outputs
datasheet in the
result scenario that was populated from running the original scenario.
We can load the result table using the datasheet()
function
and setting the name
parameter to the Outputs
datasheet.
# Results of first scenario
myOutputDataframe <- datasheet(myResultScenario,
name = "helloworldTime_OutputDatasheet")
# View results table
head(myOutputDataframe)
## Timestep y
## 1 1 13
## 2 2 16
## 3 3 19
## 4 4 22
## 5 5 25
## 6 6 28
Working with multiple scenarios
You may want to compare multiple alternative scenarios that have
slightly different inputs. To save time, you can copy a scenario that
you’ve already made, give it a different name, and modify the inputs. To
copy a completed scenario, use the scenario()
function with
the sourceScenario
argument set to the name of the scenario
you want to copy.
# Check which scenarios you currently have in your library
scenario(myLibrary)['Name']
## Name
## 1 My first scenario
## 2 My first scenario ([1] @ 13-Oct-2024 10:00 AM)
# Create a new scenario as a copy of an existing scenario
myNewScenario <- scenario(ssimObject = myProject,
scenario = "My second scenario",
sourceScenario = myScenario)
# Make sure this new scenario has been added to the library
scenario(myLibrary)['Name']
## Name
## 1 My first scenario
## 2 My first scenario ([1] @ 13-Oct-2024 10:00 AM)
## 3 My second scenario
To edit the new scenario, we must first load the contents of the
Inputs
datasheet and assign it to a new R data frame using
the datasheet()
function. We will set the
empty
argument to TRUE
so that instead of
getting the values from the existing scenario, we can start with an
empty data frame again.
# Load empty Inputs datasheets as an R data frame
myNewInputDataframe <- datasheet(myNewScenario,
name = "helloworldTime_InputDatasheet",
empty=TRUE)
# Check that we have an empty data frame
str(myNewInputDataframe)
## 'data.frame': 0 obs. of 2 variables:
## $ m: num
## $ b: num
Now, all we need to do is add our data frame of values the same way
we did before, using the addRow()
function.
# Create input data and add it to the input data frame
newInputRow <- data.frame(m = 4, b = 10)
myNewInputDataframe <- addRow(myNewInputDataframe, newInputRow)
# View the new inputs
myNewInputDataframe
## m b
## 1 4 10
Finally, we will save the updated data frame to a SyncroSim datasheet
using saveDatasheet()
.
# Save R data frame to a SyncroSim datasheet
saveDatasheet(ssimObject = myNewScenario,
data = myNewInputDataframe,
name = "helloworldTime_InputDatasheet")
## Datasheet <helloworldTime_InputDatasheet> saved
We will keep the Run Control
datasheet the same as the
first scenario.
Run scenarios
We now have two SyncroSim scenarios. We can run all the scenarios in
our project at once by telling run()
which project to use
and including a vector of scenarios in the scenario
argument.
# Run all scenarios
myResultScenarioAll <- run(myProject,
scenario = c("My first scenario",
"My second scenario"))
## [1] "Running scenario [1] My first scenario"
## [1] "Running scenario [3] My second scenario"
View results
The output that is returned from running many scenarios at once is
actually a list of result scenario objects. To view the results, we can
still use the datasheet()
function, we just need to index
for the result scenario object we are interested in.
datasheet(myResultScenarioAll[2], name = "helloworldTime_OutputDatasheet")
## Timestep y
## 1 1 14
## 2 2 18
## 3 3 22
## 4 4 26
## 5 5 30
## 6 6 34
## 7 7 38
## 8 8 42
## 9 9 46
## 10 10 50
Identifying the parent scenario of a result scenario using
parentId()
If you have many alternative scenarios and many result scenarios, you
can always find the parent scenario that was run in order to generate
the Rrsults scenario using the rsyncrosim
function
parentId()
.
parentId(myResultScenarioAll[[1]])
## [1] 1
parentId(myResultScenarioAll[[2]])
## [1] 3
Access model metadata
Getting library information using info()
Retrieve library information:
info(myLibrary)
## property value
## 1 Name: helloworldLibrary
## 2 Owner: N/A
## 3 Read Only: No
## 4 Last Modified: 2024-10-13 at 10:01 AM
## 5 Size: 204 KB (208,896 B)
## 6 Data files: helloworldLibrary.ssim.data
## 7 Publish files: helloworldLibrary.ssim.publish
## 8 Temporary files: helloworldLibrary.ssim.temp
## 9 Backup files: helloworldLibrary.ssim.backup
## 10 Use Conda: No
Getting information of any ssimObject
The following functions can be used to get useful information about a library, project, or scenario:
-
name()
: used to retrieve or assign a name -
owner()
: used to retrieve or assign an owner -
dateModified()
: used to retrieve the date when the last changes were made -
readOnly()
: used to retrieve or assign the read-only status -
filepath()
: retrieve local file path -
description()
: retrieve or add a description
You can also find identification numbers of projects or scenarios using the following functions:
-
projectId()
: used to retrieve the project identification number -
scenarioId()
: used to retrieve the scenario identification number
Backup your library
Once you have finished running your models, you may want to backup
the inputs and results into a zipped .backup subfolder. First, we want
to modify the library Backup
datasheet to allow the backup
of external model data. Since this datasheet is part of the built-in
SyncroSim core, the name of the datasheet has the prefix “core”. We can
get a list of all the datasheets with a library scope using the
datasheet()
function on a ssimLibrary object.
# Find all library-scoped datasheets
datasheet(myLibrary)
## scope name displayName
## 1 library core_Backup Backup
## 2 library core_JlConfig Julia
## 3 library core_Multiprocessing Multiprocessing
## 4 library core_Option Options
## 5 library core_ProcessorGroupOption Processor Group Options
## 6 library core_ProcessorGroupValue Processor Group Values
## 7 library core_PyConfig Python
## 8 library core_RConfig R
## 9 library core_Setting Settings
## 10 library core_SpatialOption Spatial Options
## 11 library core_SysFolder Folders
# Get the current values for the library's Backup datasheet
myDataframe <- datasheet(myLibrary, name = "core_Backup")
# View current values for the library's Backup datasheet
myDataframe
## IncludeData BeforeUpdate
## 1 TRUE TRUE
# Add output to the library's Backup datasheet and save
myDataframe$IncludeData <- TRUE
saveDatasheet(myLibrary, data = myDataframe, name = "core_Backup")
## Datasheet <core_Backup> saved
# Check to make sure IncludeOutput is now TRUE
datasheet(myLibrary, "core_Backup")
## IncludeData BeforeUpdate
## 1 TRUE TRUE
Now, you can use the backup()
function from
rsyncrosim
to backup a library, project, or scenario.
backup(myLibrary)
## Backup complete.
rsyncrosim
and SyncroSim Studio
It can be useful to work in both rsyncrosim
and
SyncroSim Studio at the same time. You can easily modify datasheets and
run scenarios in rsyncrosim
, while simultaneously
refreshing the library and plotting outputs in SyncroSim Studio as you
go. To sync the library in SyncroSim Studio with the latest changes from
the rsyncrosim
code, click the refresh icon (circled in red
below) in the upper tool bar of SyncroSim Studio.